To ensure proper functionality and optimum performance, it is STRONGLY recommended that Hillphoenix specialty cases be installed/serviced by qualified technicians who have experience working with commercial refrigerated display merchandisers and storage cabinets. For a list of Hillphoenix-authorized installation/service contractors, please visit our Web site at www.hillphoenix.com.
LIABILITY NOTICE

For Cases with Shelf Lighting Systems

Hillphoenix does NOT design any of its shelf lighting systems or any of its display cases with shelf lighting systems for direct or indirect exposure to water or other liquids. The use of a misting system or water hose on a display case with a shelf lighting system, resulting in the direct or indirect exposure of the lighting system to water, can lead to a number of serious issues (including, without limitation, electrical failures, fire, electric shock, and mold) in turn resulting in personal injury, death, sickness, and/or serious property damage (including, without limitation, to the display itself, to the location where the display is situated [e.g., store] and to any surrounding property). DO NOT use misting systems, water hoses or other devices that spray liquids in Hillphoenix display cases with lighted shelves.

If a misting system or water hose is installed or used on a display case with a shelf lighting system, then Hillphoenix shall not be subject to any obligations or liabilities (whether arising out of breach of contract, warranty, tort [including negligence], strict liability or other theories of law) directly or indirectly resulting from, arising out of or related to such installation or use, including, without limitation, any personal injury, death or property damage resulting from an electrical failure, fire, electric shock, or mold.

R-744 (CO₂) NOTICE

For Systems Utilizing R-744 (CO₂) Refrigerant

For refrigeration units that utilize R-744 (CO₂), pressure relief and pressure-regulating relief valves may need to be installed based on the system capacity. The valves need to be located such that no stop valve is positioned between the relief valves and the parts or section of the system being protected.

When de-energizing refrigeration units containing R-744 (CO₂), venting of the R-744 (CO₂) refrigerant may occur through the pressure regulating relief valves. These valves are located on the refrigeration system and not on the case model. If venting does occur, the valve must not be defeated, capped, or altered by any means.

WARNING: Under no circumstances should any component be replaced or added without consulting Hillphoenix Field Service Engineering. Utilizing improper components may result in serious injury to persons or damage to the system.
Important

At Hillphoenix®, the safety of our customers and employees, as well as the ongoing performance of our products, are top priorities. To that end, we include important warning messages in all Hillphoenix installation and operations handbooks, accompanied by an alert symbol paired with the word "DANGER", "WARNING", or "CAUTION".

All warning messages will inform you of the potential hazard; how to reduce the risk of case damage, personal injury or death; and what may happen if the instructions are not properly followed.

⚠️ DANGER
Indicates an immediate threat of death or serious injury if all instructions are not followed carefully.

⚠️ WARNING
Indicates a potential threat of death or serious injury if all instructions are not followed carefully.

⚠️ CAUTION
Indicates that failure to properly follow instructions may result in case damage.
Revision History

- new manual format_07/16
- parts page_10/16
ENERGY DATA

CDC REMOTE

Electrical Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Fans per Case</th>
<th>Box Fans</th>
<th>Re-Heaters</th>
<th>Drain Heaters</th>
<th>Optional Defrost Heaters</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>120 Volts</td>
<td>120 Volts</td>
<td>120 Volts</td>
<td>208 Volts</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amps</td>
<td>Watts</td>
<td>Amps</td>
<td>Watts</td>
</tr>
<tr>
<td>CDC</td>
<td>48”</td>
<td>2</td>
<td>0.8</td>
<td>96</td>
<td>1.375</td>
</tr>
<tr>
<td></td>
<td>59”</td>
<td>2</td>
<td>0.8</td>
<td>96</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td>77”</td>
<td>4</td>
<td>1.6</td>
<td>192</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>96”</td>
<td>4</td>
<td>1.6</td>
<td>192</td>
<td>2.5</td>
</tr>
<tr>
<td>EW-90</td>
<td>2</td>
<td>0.8</td>
<td>96</td>
<td>1.375</td>
<td>165</td>
</tr>
<tr>
<td>IW-90</td>
<td>2</td>
<td>0.8</td>
<td>96</td>
<td>1.375</td>
<td>165</td>
</tr>
</tbody>
</table>

Lighting Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Lights per Row</th>
<th>Light Length (ft)</th>
<th>Fluorescent Lighting (Per Light Row)</th>
<th>Cleanvoyant LED Lighting (Per Light Row)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>120 Volts</td>
<td>Standard Power (Cornice or Shelf)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amps</td>
<td>Watts</td>
</tr>
<tr>
<td>CDC</td>
<td>48”</td>
<td>1</td>
<td>0.27</td>
<td>32.4</td>
</tr>
<tr>
<td></td>
<td>59”</td>
<td>1</td>
<td>0.32</td>
<td>38.4</td>
</tr>
<tr>
<td></td>
<td>77”</td>
<td>2</td>
<td>0.34</td>
<td>40.8</td>
</tr>
<tr>
<td></td>
<td>96”</td>
<td>2</td>
<td>0.47</td>
<td>56.4</td>
</tr>
<tr>
<td>EW-90</td>
<td>1</td>
<td>3</td>
<td>0.21</td>
<td>25.2</td>
</tr>
<tr>
<td>IW-90</td>
<td>1</td>
<td>2</td>
<td>0.15</td>
<td>18</td>
</tr>
</tbody>
</table>

Guidelines & Control Settings (DX)

<table>
<thead>
<tr>
<th>Model</th>
<th>Conventional BTUH/ft</th>
<th>Parallel BTUH/ft</th>
<th>Superheat Set Point @ Bulb (°F)</th>
<th>Evaporator (°F)</th>
<th>Discharge Air (°F)</th>
<th>Discharge Air Velocity (FPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC</td>
<td>490</td>
<td>450</td>
<td>10</td>
<td>45</td>
<td>50</td>
<td>200</td>
</tr>
</tbody>
</table>

Defrost Controls

<table>
<thead>
<tr>
<th>Model</th>
<th>Defrosts per Day</th>
<th>Run-Off Time (min)</th>
<th>Electric Defrost</th>
<th>Timed-Off Defrost</th>
<th>Hot Gas Defrost</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDC</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

1. NOTE: “---” indicates data not applicable.

2.3 Listed BTUH indicates unlighted shelves. Add the following for lighted shelves:
 4’ Fluorescent: 80 BTUH
 3’ Fluorescent: 60 BTUH
 4’ Shelf LED: 36 BTUH
 4’ Canopy LED: 72 BTUH
 3’ Shelf LED: 27 BTUH
 3’ Hi Output LED: 54 BTUH

4. Average discharge air velocity at peak of defrost.
CASE DIMENSIONS

CDC REMOTE

POWER SUPPLY

10" x 10" MECHANICAL ACCESS FOR ELECT., REFRIG., AND DRAIN CONNECTIONS

REFLECTIVE REAR LOAD DOORS

TOEKICK

FRONT OF CASE

96 1/2 in [245.1 cm] (96" case)
56 1/2 in [143.5 cm] (59" case)
75 in [190.5 cm] (77" case)
96 1/2 in [245.1 cm] (96" case)

96" case:
- 96 1/2 in [245.1 cm]
- 48 1/2 in [123.2 cm]

59" case:
- 56 1/2 in [143.5 cm]
- 75 in [190.5 cm]

77" case:
- 75 in [190.5 cm]
- 96 1/2 in [245.1 cm]
CDC DRY

Lighting Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Lights per Row</th>
<th>Light Length (ft)</th>
<th>Fluorescent Lighting (Per Light Row)</th>
<th>Clearvoyant LED Lighting (Per Light Row)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>120 Volts</td>
<td>120 Volts</td>
</tr>
<tr>
<td>CDC</td>
<td>48”</td>
<td>1</td>
<td>4</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>59”</td>
<td>1</td>
<td>5</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>77”</td>
<td>2</td>
<td>3</td>
<td>0.34</td>
</tr>
<tr>
<td></td>
<td>96”</td>
<td>2</td>
<td>4</td>
<td>0.47</td>
</tr>
<tr>
<td>EW-90</td>
<td>1</td>
<td>3</td>
<td>0.21</td>
<td>25.2</td>
</tr>
<tr>
<td>IW-90</td>
<td>1</td>
<td>2</td>
<td>0.15</td>
<td>18</td>
</tr>
</tbody>
</table>

Engineered for stores with ambient conditions not to exceed 75° and 55% relative humidity. Due to engineering improvements specifications may change without notice. All measurements are taken per ARI 1200 - 2002 specifications. Numbers are based on standard case sizes. Consult engineering.
CASE DIMENSIONS

CDC DRY

- **Front of Case**
 - 96 1/2 in [245.1 cm] (96" case)
 - 48 1/2 in [123.2 cm] (48" case)
 - 75 in [190.5 cm] (75" case)
 - 56 1/2 in [143.5 cm] (59" case)
 - 96 1/2 in [245.1 cm] (96" case)

- **Power Supply**
 - 6 in [15.2 cm]
 - 8 11/16 in [22.1 cm]
 - 1 7/8 in [4.7 cm]

- **Mechanical Access**
 - 12 in [30.5 cm]
 - 6 in [15.2 cm]
 - 10" x 10"

- **Reflective Rear Load Doors**
 - 14 in [35.6 cm]
 - 12 in [30.5 cm]
 - 10 in [25.4 cm]

- **Toekick**
 - 1" [2.5 cm]

- **Overall Dimensions**
 - 30 in [76.2 cm]
 - 21 1/8 in [53.7 cm]
 - 51 5/16 in [130.3 cm]
 - 29 15/16 in [76.1 cm]
 - 18 7/8 in [47.9 cm]
 - 6 5/16 in [16.0 cm]
 - 6 in [15.2 cm]
 - 12 in [30.5 cm]
 - 31 1/2 in [80.0 cm]
 - 14 in [35.6 cm]
 - 21 1/8 in [53.7 cm]
 - 30 in [76.2 cm]
 - 31 1/2 in [80.0 cm]
 - 56 1/2 in [143.5 cm]
Thank you for choosing Hillphoenix for your food merchandising needs. This handbook contains important technical information and will assist you with the installation and operation of your new Hillphoenix specialty cases. By closely following the instructions, you can expect peak performance; attractive fit and finish; and long case life.

We are always interested in your suggestions for improvements (e.g. case design, technical documents, etc.). Please feel free to contact our Marketing Services group at the number listed below. Thank you for choosing Hillphoenix, and we wish you the very best in outstanding food merchandising.

CASE DESCRIPTION
This manual specifically covers the CDC application service multi-deck merchandiser.

STORE CONDITIONS
Hillphoenix cases are designed to operate in an air-conditioned store that maintains a 75°F (24°C) store temperature and 55% (max) relative humidity (ASHRAE conditions). Case operation will be adversely affected by exposure to excessively high ambient temperatures and/or humidity.

REFRIGERATION SYSTEM OPERATION
Air-cooled condensing units require adequate ventilation for efficient performance. Machine-room temperatures must be maintained at a minimum of 65°F in winter and a maximum of 95°F in summer. Minimum condensing temperatures should be no less than 70°F.

SHIPPING CASES
Transportation companies assume all liability from the time a shipment is received by them until the time it is delivered to the consumer. Our liability ceases at the time of shipment.

RECEIVING CASES
Examine fixtures carefully and in the event of shipping damage and/or shortages, please contact the Service Parts Department at the number listed below.

CASE DAMAGE
Claims for obvious damage must be 1) noted on either the freight bill or the express receipt and 2) signed by the carrier's agent; otherwise, the carrier may refuse the claim. If damage becomes apparent after the equipment is unpacked, retain all packing materials and submit a written request to the carrier for inspection within 14 days of receipt of the equipment. Failure to follow this procedure will result in refusal by the carrier to honor any claims with a consequent loss to the consumer.

If a UPS shipment has been damaged, retain the damaged material, the carton and notify us at once. We will file a claim.

LOST/MISSING ITEMS
Equipment has been carefully inspected to insure the highest level of quality. Any claim for lost/missing items must be made to Hillphoenix within 48 hours of receipt of the equipment. When making a claim please use the number listed below.

SERVICE & TECHNICAL SUPPORT
For service or technical questions regarding specialty cases, please contact our Specialty Products Division Service Department at 1-319-293-3777. For questions regarding our refrigeration systems or electrical distribution centers, please contact our Systems Division Customer Service Department at 1-770-388-0706.

CONTACTING THE FACTORY
If you need to contact Hillphoenix regarding a specific fixture, be certain that you have both the case model number and serial number (this information can be found on the data tag, located on the top-left interior of the case). When you have this information, call the number below and ask for a Service Parts Representative.
LOCATION
This refrigerated display case has been designed for displaying and storing perishable food product. It is engineered for air-conditioned stores with a maximum ambient of 75°F and 55% relative humidity.

When selecting the location for placement of this case, avoid the following conditions:

Excessive Air Movement
1. Doors
2. Air-conditioned vents
3. Other air sources

Excessive Heat
1. Windows
2. Sun
3. Flood lamps 8 feet or less from the product
4. Other heat sources

FLOOR PREP
1. Ask the general contractor if your current copy of the building dimensions are the most recently issued. Also, ask for the points of reference from which you should take dimensions to locate the cases.

2. Using chalk lines or a laser transit, mark the floor where the cases are to be located for the entire lineup. The lines should coincide with the outside edges of the case feet.

3. Move case as close as possible to its permanent location. Remove all crating and shipping braces above the shipping pallet. Loosen the plastic dust cover from the pallet, but leave cover over the case to protect it while removing the case from the pallet. Carefully, lift case up and off the pallet. Remove dust cover. Installation hardware ships in a marked packet located inside the case.

4. Leveling is necessary to ensure proper operation of the refrigeration system and drainage of the condensate. Locate the highest point on the positioning lines as a reference for determining the proper height of the shim-pack levelers. A laser transit is recommended for precision and requires just one person. Level adjustable feet by twisting, if applicable, or shim as necessary under vertical supports as this will help ensure that the case is not settling over time.

5. Locate horizontal support positions along the chalk line (Fig. 1). Spot properly leveled shim packs at each support location.

LINE-UP & INSTALLATION
Single Case
1. Move the case into position. Using a “J” bar, raise the end of the case (under cross support), and lower the horizontal support on to the shim packs. Repeat on the other end of the case.

2. Once the case is properly placed on the shim packs, check the vertical plumb of the case by placing a bubble level on the rear wall. Add/remove shim packs as needed. For the horizontal level, repeat this process after placing the bubble level on the front sill.

3. Install the bumper, if applicable, into pre-attached bumper track and snap into place.

4. After sufficient time has passed to allow for bumper shrinkage, cut away the excess bumper for final fit and finish. Be certain to use an appropriate cutting tool (tubing-or PVC-cutter) to ensure a smooth cut.

5. Install case shelves and reconnect lights. Be aware that
differing shelf configurations will affect energy consumption and case performance.

6. Install toekick back onto the base of case.

Multi-Case

1. Remove any shelves (discard the shelf clips) and/or loose items from the cases that may interfere with case joining. Keep all loose items as they will be used later in the installation process.

2. Follow the single-case installation instructions for the first case, excluding #6, then position the next case in the line-up approximately 3’ away.

3. Apply the foam tape (supplied) to the end breakers of the first case. After this is set apply the sealant to the end of the case. From the opposite end, push the second case to a position that is approximately 6” from the first case, then position case on the shim packs.

4. Push the cases tightly together, then lightly bolt them together through the holes provided (Fig. 2). Tighten all the joining bolts until all margins are equal. Be careful not to over tighten.

5. Install PVC fitting between cases with case to case piping. The stub-up location can be found under the tank on the customer left (Fig. 2). It is very important for line ups designed with holes in the pipe chase and equipped with PVC fittings to seal between the joints and protect piping.

6. Apply case-to-case watershed (supplied) over the end frame seam (Fig. 3). The watershed prevents water from settling in the case joint.

7. Repeat steps 3-6 of this sequence for all remaining cases. Be certain to properly level all cases.

8. Properly align the front panels as needed, then install, if applicable, front panel trim (supplied).

9. Install the bumper into pre-attached bumper track and snap into place.

10. After sufficient time has passed to allow for bumper shrinkage, cut away the excess bumper for final fit and finish. Be certain to use an appropriate cutting tool (tubing- or PVC-cutter) to ensure a smooth cut.

11. Install case shelves and reconnect lights. Be aware that differing case configurations will affect energy consumption and case performance.

12. Install toekick back onto the base of case.

CAUTION

Installation of 3rd-party materials may result in diminished case performance.
REFRIGERATION

Refrigeration connections will be made through the refrigeration stub up location on the customer left side of the case. Refrigeration lines may be headed together for all cases in a line-up, if necessary, by lines through the access holes with a high grade silicon to prevent recirculation. All lines must be correctly sized. See diagram on page 14 for access locations.

If it becomes necessary to penetrate the case bottom for any reason, make certain it is sealed afterward with canned-foam sealant and white RTV.

CAUTION

Be certain that all piping connections are compliant with local codes.

CAUTION

If any brazing is necessary, place wet rags around the area to avoid tank damage.

CAUTION

If the shelves are removed from the case or otherwise not utilized, the shelf setpoint (SAA) must be raised to 90°F to prevent the pump from running when only the shelves are calling for refrigeration. Failure to do so could result in early pump failure.

ELECTRICAL

Electrical hookups are made through the power supply box that can be accessed by removing the front panel.

For case-to-case wiring, run conduit between the power supply boxes or run wiring through the raceway. When connecting to the power supply on the case, field wiring should exit box from the side furthest away from case wiring to allow more room inside for wiring connections. Always check the data tag located on left end exterior panel or top interior of the case. The case must be grounded. For more detailed electrical wiring information, see Appendices A1-A2.

CAUTION

Be certain that all electrical connections are compliant with local codes.

CAUTION

Be sure to remove all styrafoam shipping blocks from piping and refrigerant lines. Failure to do so may result in case damage.

PLUMBING

The drain outlet or “P” trap (Fig. 6) is shipped loose with the case and made from a 1 1/2” PVC pipe. Care should be given to ensure that all connections are water-tight and sealed with the appropriate PVC or ABS cement.

Drain lines can be run left or right of the tee with the proper pitch to satisfy local drainage requirements. When connecting the PVC to the existing floor drains be sure to provide as much downhill slope as possible and avoid long runs of drain lines.

Do not install condensate drains in contact with non-insulated suction lines in order to prevent condensate from freezing. Install the 1 1/2” PVC trap, which is provided with the case. All drains must be trapped.

Before operating the case, be certain to remove the styrafoam shipping block that protects the plumbing lines during shipping.

CAUTION

Be certain that all plumbing connections are compliant with local codes.
MECHANICAL ACCESS LOCATIONS

POWER SUPPLY

10" x 10" MECHANICAL ACCESS FOR ELECT., REFRI., AND DRAIN CONNECTIONS

FRONT OF CASE

TOEKICK

96 1/2 in [245.1 cm] (96" case)
75 in [190.5 cm] (77" case)
75 in [190.5 cm] (77" case)
56 1/2 in [143.5 cm] (59" case)
48 1/2 in [123.2 cm] (48" case)

12 in [30.5 cm]
6 in [15.2 cm]
8 11/16 in [22.1 cm]
1 7/8 in [4.7 cm]
30 in [76.2 cm]
1 in [2.5 cm]
1 in [2.5 cm]
GENERAL LIGHTING INFORMATION

Hillphoenix cases are equipped with either T-8 lights or LED luminaires and feature specially designed light reflectors in the cornice to improve the illumination of products. Depending on case configuration, T-8 electronic ballasts or LED power supplies operate both the cornice and shelf lights and are located above the cornice reflectors.

The lighting system in the electrical raceway has an ON/OFF switch located at the outside front of the case. Once cases have been properly positioned in the store and an electrician has connected the lighting circuit, the lights may be turned on to verify that they are connected and functioning properly.

To ensure peak performance, it is advisable to run the lighting systems only when the store climate control is on and case refrigeration is started. **NOTE:** it is highly recommended that the ambient store temperature not exceed 80°F.

DANGER

SHOCK HAZARD

Always disconnect power to case when cleaning, servicing or configuring components of the lighting system. Failure to do so may result in serious injury or death.

WARNING

Using improper DC power supplies may damage the luminaires, resulting in sub-standard operation and increased chances of safety issues/injury.

WARNING

Never replace a 24V DC power supply with a T8 or T5 ballast of any kind! Ballasts use alternating current (AC) instead of direct current (DC) and operate at a much higher voltage than is used by this LED system. Doing so will damage the LED system and increases the chance of safety issues/injury.

SHELF LUMINAIRES

1. Unplug T-8 lamp power cords located at the inside-back of the case below the lamp being replaced (Fig.5).
2. Carefully separate the cap from the lamp holder on both ends of the T-8 lamp (Fig. 6). Simultaneously pull down at both ends of the old T-8 lamp to remove.
3. Push and snap the new T-8 lamp into place on the lamp holder. When the T-8 is properly seated, the lamp button - which secures the T-8 to the lamp holder - will be clearly visible through the lamp button hole. The cap should be pushed all the way down (Fig. 7) for positive engagement indicator.

BALLAST/POWER SUPPLY ACCESS

To gain access to the ballasts or power supplies remove the panel located above the front toe kick (Fig. 8).
REPLACING LED LIGHTS

Once store power is connected and the light circuit is energized, the Clearvoyant LED system should operate without the need for any significant maintenance for several years. Should a power supply need to be removed and/or replaced, turn off the power to the case before proceeding. Be certain to replace the power supply with genuine Hillphoenix parts or a comparable UL-listed Class-2 rated regulated 24V DC power supply with 100W output capacity.

DANGER
SHOCK HAZARD

Always disconnect power to case when cleaning, servicing or configuring components of the lighting system. Failure to do so may result in serious injury or death.

SHELF LUMINAires

Removing shelf luminaires:
1. Unplug the luminaire.
2. Pinching the latching clips inward at the ends of the luminaire, rotate luminaire up at each end until hooks are free, then remove.

Re-installing shelf luminaires:
1. Place hook into shelf roll form at shelf front and rotate rear of luminaire toward the shelf.
2. Depress the rear clip so that luminaire can finish rotation and until clip engages the shelf bracket.

NON-SHELF LUMINAires

Removing non-shelf luminaires:
1. Simultaneously squeeze the plastic clips at each end.

2. When the hooks are disengaged, pull the luminaire free.

Re-installing non-shelf luminaires:
1. Align the 4-pole jack with the 4-pole connector on the clip-in luminaire.
2. Push into place - side clips will engage on the sheet metal of the case.
3. Fasten anti-tamper bracket into sheet metal of case with #8 screw at end opposite of the 4-pole in-line connector.
Before powering-up the case, be certain that all of the steps listed below have been completed to ensure proper case functionality, safety and compliance with warranty terms.

- Have you thoroughly examined the case for shipping damage? (see pg. 6)
- Have you checked the vertical plumb of the case? The horizontal level? (see pg. 7)
- Have you applied the sealant to the end breakers of adjoining cases? (see pg. 8)
- Have you sealed the case-to-case joints by applying caulk and acrylic tape to the end frame seam? (see pg. 8)
- Have you installed the toekick? (see pg. 8)
- Have you removed the shipping blocks from the refrigeration and plumbing lines? (see pg. 8)

After powering-up the case, be certain that all of the steps listed below have been completed to ensure proper case functionality, safety and compliance with warranty terms.

1. Check all lights to ensure they are all functioning properly.

2. Check case temperature and adjust controller as needed.
AIRFLOW & PRODUCT LOAD

Hillphoenix cases provide maximum product capacity within the refrigerated air envelope. Please keep products within the appropriate load limit.

It is important that you do not overload the food product display so that it impinges on the airflow pattern (Fig. 9). Overloading will cause malfunction and the loss of proper temperature levels.

Fig. 9 Airflow pattern

WARNING

Always keep product within the designated air curtain. Failure to do so may result in case malfunction and product losing proper temperature, resulting in sub-standard operation and increased chances of food contamination.

DEFROST & TEMPERATURE CONTROLS

Cases are equipped with either Hot Gas or Timed-Off defrost at the owner's option.

The hot gas defrost termination sensor bulb and probe are attached to the dump line which is in the front, left-hand side of the case.

Defrost & Temperature Control Thermostat

The defrost termination control thermostat and the temperature control thermostat are located in one of two places depending on the rear sill. For cases with a standard flat rear sill the thermostat is located in the sliding ballast tray on the bottom. For cases with an extended rear sill the thermostats are located under the rear sill behind an easily removable cover.

To access the thermostats on cases with a standard flat rear sill it requires that the rear panel be removed. For cases with an extended rear sill, access to the thermostats simply by lifting off the ballast cover from under the rear sill.

It is important to consult the control setting guidelines shown on pages 2-9 before setting defrost times. Further adjustment may be required depending on store conditions.

DETERMINING SUPERHEAT

To identify proper superheat settings, complete the following:

1. Obtain suction pressure from access port; obtain suction line temperature from area near TXV bulb at the outlet of evaporator coil.
2. Using the suction pressure reading, convert pressure to temperature using temperature pressure chart (see Appendix C1).
3. Finally, subtract the converted temperature reading from the actual temperature reading for superheat setting.
CASE CLEANING

A periodic cleaning schedule should be established to maintain proper sanitation, insure maximum operating efficiency, and avoid the corrosive action of food fluids on metal parts that are left on for long periods of time. We recommend cleaning once a week. Further suggestions for case cleaning include the following:

• To avoid shock hazard, be sure all electrical power is turned off before cleaning. In some installations, more than one disconnect switch may have to be turned off to completely de-energize the case.

• All surfaces pitch downward to a deep-drawn drain trough, funneling liquids to the center of the case where the waste outlet is located for easy access. Check the waste outlet to insure it is not clogged before starting the cleaning process and avoid introducing water faster than the case drain can carry it away.

• To clean the LED luminaires, shut off the lights in the case, then wipe the luminaires down with a soft, damp cloth. Avoid using harsh or abrasive cleaners as they may damage the lights. Be certain that the luminaires are completely dry before re-energizing.

• Clean from top to bottom when cleaning the display case to avoid cross contamination.

• If any potentially harmful cleaners are used, be certain to provide a temporary separator (e.g., cardboard, plastic wrap, etc.) between those cases that are being cleaned and those that may still contain product.

• Avoid spraying any cleaning liquids directly on the electrical connections.

• Allow cases to be turned off long enough to clean any frost or ice from coil and pans.

• Remove toekick and clean underneath the case with a broom and a long-handled mop. Use warm water and a disinfecting cleaning solution when cleaning underneath the cases.

DANGER

SHOCK HAZARD

Always disconnect power to case when servicing or cleaning. Failure to do so may result in serious injury or death.

WARNING

Exercise extreme caution when working in a case with the pressure plate removed. The coil contains many sharp edges that can result in severe cuts to the hands and arms.

Fans and Pressure Plate

1. Disconnect power to the case and wait for fans to come to a complete stand-still.

2. To access the underside of the fans lift the pressure plate by use of the provided handles. The topside of pressure plate will rest against the topside of the coil cover, expos-
CASE CLEANING

Coil Inspection
1. Disconnect power to the case and wait for fans to stop movement and come to stand-still.
2. Remove the top two screws at both ends of the coil cover. (Fig. 12). **Be sure to save the removed screws for reassembly.**

3. Carefully, without bending the sheet metal cover, lift from the back end of panel, and rest the topside of coil cover on pressure plate handles (Fig. 13 & 14).
4. Clean as necessary. Use a spray bottle filled with an approved mild detergent and warm water. **This location should be accessed by qualified personnel only.**
5. Be sure to screw the coil cover back to its original position after cleaning and/or inspection is complete.

WARNING
Exercise extreme caution when working in a case with the coil cover removed. The coil contains many sharp edges that can result in severe cuts to the hands and arms.

CAUTION
Always be sure to move the pressure plate and screw the coil cover back to their original position after the cleaning and/or inspection is complete. Failure to do so may result in damage to the refrigerant system.

Rear Load Doors
1. Remove the rear sliding doors on the back of the case and clean. To remove: push up and pull out (Fig. 15).

2. Use a spray bottle filled with an approved mild detergent and warm water.
3. Use a clean, disposable cloth (approved item) to thoroughly clean all areas of the case.
4. Wipe down doors with a clean, disposable cloth (approved item)
5. Place the cleaned doors on a clean sanitized surface until they are dry.
Contact the Service Parts Department at:

319-293-3777

Provide the following information about the part you are ordering:

• Model number and serial number* of the case for which the part is intended.
• Length of the part (if applicable).
• Color of part (if painted) or color of polymer part.
• Whether part is for left- or right-hand application.
• Quantity

*Data tag is located on the left end exterior panel or top interior of the case.

If the parts are to be returned for credit, contact the Parts Department. Do not send parts without authorization.
A1-A2 .. Wiring Information
B1-B4 .. Dixell Operating Instructions
C1 ... Sporlan Pressure-Temperature Chart
D1 ... Parts List
B1: DIXELL OPERATING INSTRUCTIONS

Installing and Operating Instructions

Digital controller with defrost and fans management

XR70CX

1. GENERAL WARNING

1.1 PLEASE READ BEFORE USING THIS MANUAL

- This manual is part of the product and should be kept near the instrument for easy and quick reference.
- The instrument shall not be used for purposes different from those described hereunder. It cannot be used as a safety device.
- Check the application limits before proceeding.

1.2 SAFETY PRECAUTIONS

- Do not expose to water or moisture; use the controller only within the operating limits avoiding sudden temperature changes with high atmospheric humidity to prevent formation of condensation
- Warning: disconnect all electrical connections before any kind of maintenance.
- Fit the probe where it is not accessible by the End User. The instrument must not be opened.
- In case of failure or faulty operation send the instrument back to the distributor or to “Dixell S.p.A.” (see address) with a detailed description of the fault.
- Consider the maximum current which can be applied to each relay (see Technical Data).
- Ensure that the wires for probes, loads and the power supply are separated and far enough from each other, without crossing or intertwining.
- In case of applications in industrial environments, the use of mains filters (our mod. FT1) in parallel with inductive loads could be useful.

2. GENERAL DESCRIPTION

Model XR70CX, format 52 x 74 mm, is microprocessor based controller, suitable for applications on medium or low temperature ventilated refrigerating units. It has four relay outputs to control compressor, fan, and defrost, which can be either electrical or reverse cycle (hot gas). The last one can be used as light, for alarm signalling or as auxiliary output. It is also provided with up to four NTC or PTC probe inputs, the first one for temperature control, the second one, to be located onto the evaporator, to control the defrost termination temperature and to manage the fan. The digital input can operate as third temperature probe. The fourth one, to connect to the HOT KEY terminals is used to signal the condenser temperature alarm or to display a temperature.

The HOT KEY output allows to connect the unit, by means of the external module XJ485-CX, to a network line Modbus-RTU compatible such as the dixell monitoring units of X-WEB family. It allows to program the controller by means of the HOT KEY programming keyboard.

The instrument is fully configurable through specific parameters that can be easily programmed through the keyboard.

3. CONTROLLING LOADS

3.1 COMPRESSOR

The regulation is performed according to the temperature measured by the thermostat probe with a positive differential from the set point: if the temperature increases and reaches set point plus differential the compressor is started and then turned off when the temperature reaches the set point value again.

In case of fault in the thermostat probe the start and stop of the compressor are timed through parameters "CN0" and "COF".

3.2 DEFROST

Two defrost modes are available through the "tdF" parameter: defrost through electrical heater (tdF = 0L) and hot gas defrost (tdF = 0h). Other parameters are used to control the interval between defrost cycles (tdF), its maximum length (MdF) and two defrost modes: timed or controlled by the evaporator’s probe (F2P).

At the end of defrost the compressor is off, and not run during defrost;

After defrost, there is a timed fan delay allowing for drip time, set by means of the "dFt" parameter.

3.3 CONTROL OF EVAPORATOR FANS

The fan control mode is selected by means of the "FCn" parameter:

Fnc = C; fans will switch ON and OFF with the compressor and not run during defrost;
Fnc = C,Y; fans will turn on when the compressor is off, and not run during defrost;
Fnc = Y; fans will continuously also during defrost.

An additional parameter "FSI" provides the setting of temperature detected by the evaporator probe, above which the fans are always OFF. This is used to make sure circulation of air only if its temperature is lower than the set in "FSI".

3.3.1 Forced activation of fans

This function managed by the Fct parameter is designed to avoid short cycles of fans, that could happen when the controller is switched on or after a defrost, when the room air warms the evaporator. Functioning: if the difference of temperature between the evaporator and the room probes is more than the value of the Fct parameter, the fans are switched on. With Fct=0 the function is disabled.

3.3.2 Cyclical activation of the fans with compressor off.

When Fnc = C or C,Y (fans in parallel to the compressor), by means of the Fcn and Fof parameters the fans can carry on and off cycles even if the compressor is switched off. When the compressor is stopped the fans go on working for the Fon time. With Fof=0 the fans remain always off, when the compressor is off.

5. MAX & MIN TEMPERATURE MEMORIZATION

5.1 HOW TO SEE THE MIN TEMPERATURE

1. Press and release the "<" key.
2. The "Lo" message will be displayed followed by the minimum temperature recorded.
3. By pressing the "<" key again or by waiting 5s the normal display will be restored.

5.2 HOW TO SEE THE MAX TEMPERATURE

1. Press and release the ">" key.
2. The "Hi" message will be displayed followed by the maximum temperature recorded.
3. By pressing the ">" key again or by waiting 5s the normal display will be restored.

5.3 HOW TO RESET THE MAX AND MIN TEMPERATURE RECORDED

1. Hold press the SET key for more than 3s, while the max. or min temperature is displayed. 15s message will be displayed.
2. To confirm the operation the "rSt" message starts blinking and the normal temperature will be displayed.

6. MAIN FUNCTIONS

6.1 HOW TO SEE THE SETPOINT

1. Push and immediately release the SET key; the display will show the Set point value;
2. Push and immediately release the SET key or wait for 5 seconds to display the probe value again.

6.2 HOW TO CHANGE THE SETPOINT

1. Push the SET key for more than 2 seconds to change the Set point value;
2. The value of the set point will be displayed and the "C" or "F" LED starts blinking;
3. To change the Set value push the "<" or ">" arrows within 10s;
4. To memorise the new set point value push the SET key again or wait 10s.
6.3 HOW TO START A MANUAL DEFROST

Push the DEF key for more than 3 seconds and a manual defrost will start.

6.4 HOW TO CHANGE A PARAMETER VALUE

To change the parameter's value operate as follows:
1. Enter the Programming mode by pressing the Set + keys for 3s (the "C" or "=F" LED starts blinking).
2. Select the required parameter. Press the "SET" key to display its value
3. Use UP or DOWN to change its value.
4. Press "SET" to store the new value and move to the following parameter.
To exit: Press SET + UP or wait 15s without pressing a key.
NOTE: The set value is stored even when the procedure is exited by waiting the time-out to expire.

6.5 THE HIDDEN MENU

The hidden menu includes all the parameters of the instrument.

6.5.1 HOW TO ENTER THE HIDDEN MENU

1. Enter the Programming mode by pressing the Set + keys for 3s (the "C" or "=F" LED starts blinking).
2. Release the keys, then push again the Set + keys for more than 7s. The Pr2 label will be displayed immediately followed from the HY parameter.
NOW YOU ARE IN THE HIDDEN MENU.
1. Select the required parameter.
2. Press the "SET" key to display its value
3. Use + or - to change its value.
4. Press "SET" to store the new value and move to the following parameter.
To exit: Press Set + or wait 15s without pressing a key.
NOTE: If none parameter is present in Pr1, after 3s the "noP" message is displayed. Keep the keys pushed till the P2 message is displayed.
NOTE2: the set value is stored even when the procedure is exited by waiting the time-out to expire.

6.5.2 HOW TO MOVE A PARAMETER FROM THE HIDDEN MENU TO THE FIRST LEVEL AND VICEVERSA.

Each parameter present in the HIDDEN MENU can be removed or put into "THE FIRST LEVEL" (user level) by pressing "SET + ".

IN HIDDEN MENU: when a parameter is present in First level the decimal point is on.

6.6 HOW TO LOCK THE KEYBOARD

1. Keep pressed for more than 3s the UP - DOWN keys.
2. The "POS" message will be displayed and the keyboard will be locked. At this point it will be possible only to see the set point or the MAX/Min temperature stored.
3. If a key is pressed more than 3s the "POS" message will be displayed.

6.7 TO UNLOCK THE KEYBOARD

Keep pressed together for more than 3s the + and - keys, till the "Poen" message will be displayed.

6.8 THE CONTINUOUS CYCLE

When defrost is not in progress, it can be activated by holding the + key pressed for about 3 seconds. The compressor operates to maintain the "ccS" set point for the time set through the "QCT" parameter. The cycle can be terminated before the end of the set time using the same activation key + for 3 seconds.

6.9 THE ONOFF FUNCTION

With "oFF" or "oN", pushing the ONOFF key, the instrument is switched off. The "OFF" message is displayed. In this configuration, the regulation is disabled. To switch the instrument on, push again the ONOFF key.
WARNING: Loads connected to the normally closed contacts of the relays are always supplied and under voltage, even if the instrument is in stand by mode.

7. PARAMETERS

7.1 REGULATION

Hy Differential: (+ 25.5°C / 12°F) Intervention differential for set point. Compressor Cut In is Set Point + differential (Hy). Compressor Cut OUT is when the temperature reaches the set point.
L9 Minimum set point: (+ 50°C / SET+5.0F SET)= Sets the minimum value for the set point.
US Maximum set point: (SET+110°C SET+230°F) Set the maximum value for set point.
Ot Thermostat probe calibration: (12.0÷12.0°C, -120÷+120°F) Allows to adjust possible offset of the thermostat probe.
P2P Evaporator probe presence: nP: not present: the defrost stops by time; yP: present: the defrost stops by temperature.
OE Evaporator probe calibration: (+ 12.0÷12.0°C, -120÷+120°F), allows to adjust possible offset of the evaporator probe.
P3P Third probe presence: (nP: not present: the terminal operates as digital input; yP: present: the terminal operates as third probe.
P3P Third probe calibration: (P3: 12.0÷12.0°C,-120÷+120°F), allows to adjust possible offset of the third probe.
P4P Fourth probe presence: (nP: not present: yP: present) +
04 Fourth probe calibration: (12.0÷12.0°C) allows to adjust possible offset of the fourth probe.
06 Outputs activation delay at start up: (+ 2050mm) This function is enabled at the initial start up of the instrument and inhibits any output activation for the period of time set in the parameter.
AC Anti-cycle short delay: (delay = 05 min) minimum interval between the compressor stop and the following restart.
r Percentage of the second and first probe for regulation (0÷100; 100 = P1; 0 = P2; r): it allows to set the regulation according to the percentage of the first and second probe, as for the following formula (rP1-P2/100 x P2).

CCT Compressor ON time during continuous cycle: (0÷24.0h, res. 10min) Allows to set the length of the continuous cycle: compressor stays on without interruption for the CCT time. Can be used, for instance, when the room is filled with new products.
CCS Set point for continuous cycle: (+ 150°C) it sets the set point used during the continuous cycle.
CCO Compressor ON time with faulty probe: (0÷255 min) time during which the compressor is active in case of faulty thermostat probe. With CCO=0 compressor is always OFF.
COD Compressor OFF time with faulty probe: (0÷255 min) time during which the compressor is OFF in case of faulty thermostat probe. With COD=0 compressor is always active.

DISPLAY

CF Temperature measurement unit: °C=Celsius; °F= Fahrenheith. WARNING: When the measurement unit is changed the SET point and the values of the parameters Hy, Lt, Os, Ut and all ALU and ALL have to be checked and modified if necessary.
rs Resolution (for °C) (in 1°C, dE=0.1°C) allows decimal point display.
Lod Instrument display: (P1; P2; P3; P4; SET; dt): it selects which probe is displayed by the instrument. P1 = Thermostat probe; P2= Evaporator probe; P3 = Third probe (only for model with this option enabled); P4 = Fourth probe, SET = set point; dt = percentage of visualization.

rd X-REP display (optional): (P1; P2; P3; SET, dt, str) it selects which probe is displayed by X-REP. P1 = Thermostat probe; P2 = Evaporator probe; P3 = Third probe (only for model with this option enabled); P4 = Fourth probe, SET = set point; dt = percentage of visualization.

ul Display delay: (=20.0min, res. 10s) when the temperature increases, the display is updated of 1°C/1°F after this time.

Pd Percentage of the first and second probe for visualization when Lod = (0÷100; 100 = P1, 0 = P2): If Lod = dt it allows to set the visualization according to the percentage of the first and second probe, as for the following formula (dtP1-P2/100 x P2).

DEFROST

dpF Probe selection for defrost termination: nP = no probe; P1 = thermostat probe; P2 = evaporator probe; P3 = configurable probe. P4 = Probe on Hot Key plug.

dFit Defrost cycle: EL = electrical heater; in = hot gas

dFd Temperature displayed during defrost: (+35÷255°C) When P2 = n, (not evaporator probe: timed defrost) it sets the defrost duration, when P2P = y (defrost end based on temperature) it sets the maximum length for defrost.

dFp Start defrost delay: (0÷99min) This is useful when different defrost start times are necessary to avoid overdrying the plant.

dFd Deferred temperature displayed during defrost: (it = real temperature; it = defrost temperature when p1 = set point: str = set point; dF = "dE" setting of temperature, detected by evaporator probe, which causes the end of defrost.

dif Interval between defrost cycles: (0÷120h) Determines the time interval between the beginning of two defrost cycles.

MDF Maximum length for defrost: (+35°255°C) When P2 = n, (not evaporator probe: timed defrost) it sets the defrost duration, when P2P = y (defrost end based on temperature) it sets the maximum length for defrost.

FANS

Frc Fans operating mode: C = runs with the compressor, OFF: during defrost; o = continuous mode, OFF during defrost; C-Y = runs with the compressor, ON during defrost; o-Y = continuous mode, ON during defrost.
Fnd Fans delay after defrost: (0÷255min) Interval between end of defrost and evaporator fans start.

Ft Temperature differential avoiding short cycles of fans (0÷50°C; Fan=0 function disabled), if the difference of temperature between the evaporator and the room probes is more than the value of the Fct parameter, the fans are switched off.
FSt Fans stop temperature: (50÷50°C/122°F) setting of temperature, detected by evaporator probe, above which fans are always OFF.

Fan Off time: (0÷15 min) with Fnc = C or C, y (fan activated in parallel with compressor). It sets the evaporator fan ON/OFF when the compressor is off. With Fan=0 and Fan=0 if the fan are always on/off with Fnc=0 and Fan=0 if the fan are always on/off.

Fan Off time: (0÷15 min) with Fnc = C or C, y (fan activated in parallel with compressor). It sets the evaporator fan ON/OFF when the compressor is off. With Fan=0 and Fan=0 if the fan are always on/off with Fnc=0 and Fan=0 if the fan are always on/off.

FAP Probe selection for fan management: nP = no probe; P1 = thermostat probe; P2 = evaporator probe; P3 = configurable probe; P4 = Probe on Hot Key plug.

ALU

ALC Temperature alarms configuration: (A1; A2)
= absolute temperature alarm temperature is given by the ALL or ALU values. = temperature alarms are referred to the set point. Temperature alarm is enabled when the temperature exceeds the "SET ALL" or "SET ALL" values.

ALL Maximum temperature alarm: (SET+110°C SET+230°F) when this temperature is reached the alarm is enabled, after the "ALU" delay time.

ALL Minimum temperature alarm: (50÷110°C), when this temperature is reached the alarm is enabled, after the "ALU" delay time.

AFH Differential for temperature alarm and recovery: (0÷255°C, 1÷45°F) Intervention recovery for recovery of temperature alarm. It's also used for the restart of the fan when the Fst temperature is reached.

AD Temperature alarm delay: (0÷255 min) time interval between the detection of an alarm condition and alarm signalling.

dAO Exclusion of temperature alarm at start: (from 0 min to 23.5h) time interval between the detection of the temperature alarm condition after instrument power on and alarm signalling.

CONDENSER TEMPERATURE ALARM

AP2 Probe selection for temperature alarm of condenser: nP = no probe; P1 = thermostat probe; P2 = evaporator probe; P3 = configurable probe; P4 = Probe on Hot Key plug.

AA2 Low temperature alarm of condenser: (55÷150°C) when this temperature is reached the L2 alarm is signalled, possibly after the A2 delay.
B3: DIXELL OPERATING INSTRUCTIONS

Installing and Operating Instructions

1592020070

8.6 INVERSION OF THE KIND OF ACTION: HEATING-COOLING (1F = Htr)

This function allows to invert the regulation of the controller: from cooling to heating and viceversa.

8.7 ENERGY SAVING (1F = ES)

The Energy Saving function allows to change the set point value as the result of the SET + HES (parameter) sum. This function is enabled until the digital input is activated.

8.8 DIGITAL INPUTS POLARITY

The digital input polarity depends on the "1F" parameter.

1PCL: the input is activated by closing the contact.

1PWP: the input is activated by opening the contact

9. TTL SERIAL LINE – FOR MONITORING SYSTEMS

The TTL serial line, available through the HOT KEY connector, allows by means of the external TTLRS448 converter, XJ45-CX, to connect the instrument to a monitoring system ModBUS-RTU compatible such as the X-WEB00/300/500.

10. X-REP OUTPUT – OPTIONAL

As optional, an X-REP can be connected to the instrument, through the HOY KEY connector. The X-REP output EXCLUDES the serial connection.

To connect the X-REP to the instrument the following connections must be used CAB-51F(1m), CAB-52F(2m), CAB-55F(5m).

11. INSTALLATION AND MOUNTING

The instrument shall be mounted on vertical panel, in a 29/7 mm hole, and fixed using the special bracket supplied.

The temperature range allowed for correct operation is 0-60 °C. Avoid places subject to strong vibrations, corrosive gases, excessive dirt or humidity. The same recommendations apply to probes. Let air circulate by the cooling holes.

12. ELECTRICAL CONNECTIONS

The probes shall be mounted with the bulb upwards to prevent damages due to casual liquid infiltration. It is recommended to place the thermostat probe away from air streams to correctly measure the average room temperature. Place the defrost termination probe among the evaporator fins in the coldest place, where most ice is formed, far from heaters or from the warmest place during defrost, to prevent premature defrost termination.

13. HOW TO USE THE HOT KEY

13.1 HOW TO PROGRAM A HOT KEY FROM THE INSTRUMENT (UPLOAD)

1. Program one controller with the front keypad.
2. When the controller is ON, insert the ‘Hot key’ and push a key; the “UP” message appears followed by a flashing “End”.
3. Push ”SET” key and the End will stop flashing.
4. Turn OFF the instrument remove the ‘Hot key’, then turn it ON again.

NOTE: the ‘Err’ message is displayed for failed programming. In this case push again a key if you want to restart the upload again or remove the ‘Hot key’ to abort the operation.

13.2 HOW TO PROGRAM AN INSTRUMENT USING A HOT KEY (DOWNLOAD)

1. Turn OFF the instrument.
2. Insert a programmed “Hot Key” into the 5 PIN receptacle and then turn the Controller ON.
3. Automatically the parameter list of the “Hot Key” is downloaded into the Controller memory, the “bcl” message is blinking followed by a flashing “End”.
4. After 10 seconds the instrument will restart working with the used CAB-51F(1m), CAB-52F(2m), CAB-55F(5m).

14. ALARM SIGNALS

Message	Cause	Outputs
P1 | Room probe failure | Compressor output to acc. per. “con” and “off”
P2 | Evaporator probe failure | Defrost end is timed
P3 | Third probe failure | Outputs unchanged
P4 | Fourth probe failure | Outputs unchanged
P5 | Maximum temperature alarm | Outputs unchanged
P6 | Minimum temperature alarm | Outputs unchanged
L1 | Condenser high temperature | Depends on the “L1” parameter
L2 | Condenser low temperature | Depends on the “L1” parameter
C1 | Door open | Compressor and fans restarts
C2 | External alarm | Outputs unchanged
C3 | Serious external alarm | Outputs OFF
C4 | Pressure switch alarm | Outputs OFF

8.1 DOOR SWITCH INPUT (1F = dor)

It signals the door status and the corresponding relay output; the output status of the digital input. The alarm stops just after the digital input is deactivated.

8.2 GENERIC ALARM (1F = EAL)

As soon as the digital input is activated, the unit will wait for “did” time delay before signaling the “EAL” alarm message. The outputs status change. The alarm stops just after the digital input is deactivated.

8.3 SERIOUS ALARM MODE (1F = bAL)

When the digital input is activated, the unit will wait for “did” time delay before signaling the “bAL” alarm message. The relay outputs are switched OFF. The alarm will stop as soon as the digital input is deactivated.

8.4 PRESSURE SWITCH (1F = PAL)

If the pressure switch on the “did” parameter, the pressure switch has reached the number of activation of the “bPS” parameter, the “PAL” alarm message will be displayed. The compressor and the regulation are stopped. When the digital input is ON the compressor is always OFF. If the “bPS” activation in the old time is reached, switch off and on the instrument to restart normal operation.

8.5 START DEFROST (1F = dFr)

It starts a defrost if there are the right conditions. After the defrost is finished, the normal regulation will restart only if the digital input is disabled otherwise the instrument will wait until the “Mid” safety time is expired.
14.1 ALARM RECOVERY
Probes alarms P1, P2, P3 and P4 start immediately after they are tampered. They automatically tamper after they are tampered. Normal operation is restored. Check connections before replacing the probe.

Temperature alarms: ‘HA’ ‘LA’ ‘H2A’ and ‘L2A’ automatically stop as soon as the temperature returns to normal values.

Alarms ‘EA’ and ‘CA’ (with the TB1-F) recover only by switching off and on the instrument.

14.2 OTHER MESSAGES

Pon Keyboard unlocked.
Ppf Keyboard locked.
noP In programming mode: none parameter is present in P1.

14.5 TECHNICAL DATA

Housing: self-extinguishing AB0.
Case: XR70CX frontal 32x74 mm; depth 60mm;
Mounting: XR70CX panel mounting in a 71x92mm panel cut-out
Protection: P20; FrONTAL protection: XR70CX, P65
Connections: Screw terminal block; 2 x 2 mm² wiring.
Power supply: according to the model: 12Vac/50%, 24Vac/50%, 120Vac/10%, 50/60Hz.
Power absorption: 3Wx10 max
Display: 3 digits, red LED, 14,2 mm high; Inputs: Up to 4 NTC or PTC probes.

Digital input voltage contact
Relay outputs: compressor SPST (3) A, 250Vac or SPST 16/8A 250Vac
deffrost: SPST (3) A, 250Vac or SPST 16/8A 250Vac
fan: SPST 1A, 250Vac or SPST 16/8A 250Vac
aux: SPST (3) A, 250Vac or SPST 16/8A 250Vac

Data storage: on the non-volatile memory (EEPROM).
Kind of action: 16; Pollution grade: 4; Software class: A;
Rated impulse voltage: 2500V; Overvoltage Category: II
Operating temperature: 0÷+65 °C; Storage temperature: -30÷+85 °C.
Relative humidity: 0÷95% (no condensing)
Measuring and regulation range: NTC probe: -40÷+110°C (-40÷+230°F);
PTC probe: -30÷+150°C (-25÷+302°F);
Resolution: 0.1 °C or 1 °F (selectable); Accuracy (ambient temp. 23°C): ±0.7°C ±1% of scale.

16. CONNECTIONS

The X-REP output excludes the TTL output. It’s present in the following codes: XR70CX-xx2xx, XR70CX-xxx2xx; XR70CX-xx2xx.

16.1 XR70CX – 8A OR 16A COMP. RELAY - 230VAC OR 120VAC

NOTE: The compressor relay is 8(3)A or 16(6)A according to the model.
24Vac supply: connect to the terminals 5 and 6.

16.2 XR70CX – 4 X 16A – 12VAC/DC

17. DEFAULT SETTING VALUES

<table>
<thead>
<tr>
<th>Label</th>
<th>Name</th>
<th>Range</th>
<th>'OF'</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lyn</td>
<td>Differential</td>
<td>0.1÷25 °C/°F 1: 250 °C/°F</td>
<td>2.5</td>
<td>P11</td>
</tr>
<tr>
<td>LyS</td>
<td>Minimum point</td>
<td>-30°C÷+35°C/°F</td>
<td>-9°F</td>
<td>P12</td>
</tr>
<tr>
<td>LyU</td>
<td>Maximum point</td>
<td>-30°C÷35°C/°F</td>
<td>-9°F</td>
<td>P13</td>
</tr>
<tr>
<td>Ok</td>
<td>Thermostat probe calibration</td>
<td>-12÷-12°C/120÷-120°F</td>
<td>0.0</td>
<td>P14</td>
</tr>
<tr>
<td>FP2</td>
<td>Evaporator probe presence</td>
<td>immediate; Pr=Pr2</td>
<td>Y (y)</td>
<td>P15</td>
</tr>
<tr>
<td>OE</td>
<td>Evaporator probe calibration</td>
<td>-12÷12°C/120÷-120°F</td>
<td>0.0</td>
<td>P16</td>
</tr>
<tr>
<td>O3</td>
<td>Third probe presence</td>
<td>immediate; Pr=Pr2</td>
<td>Y (y)</td>
<td>P17</td>
</tr>
<tr>
<td>FP3</td>
<td>Third probe presence</td>
<td>immediate; Pr=Pr2</td>
<td>Y (y)</td>
<td>P18</td>
</tr>
<tr>
<td>FP4</td>
<td>Fourth probe presence</td>
<td>immediate; Pr=Pr2</td>
<td>Y (y)</td>
<td>P19</td>
</tr>
</tbody>
</table>

* Only for models XR70CX-xx2xx, XR70CX-xxx2xx, XR70CX-xx2xx, XR70CX-xxx2xx.

 Dixell S.p.A. Z. I. Via dell'Industria, 27
32010 Pieve d’Alpago (BL) ITALY
Tel: +39 - 0437 - 98 33 - Fax: +39 - 0437 - 98 93 13
E-mail: dixell@dixell.com - http://www.dixell.com
TEMPERATURE PRESSURE CHART - at sea level

To determine subcooling for R-404A use BUBBLE POINT values (Temperatures above 50°F — Gray Background); to determine superheat for R-404A, use DEW POINT values (Temperatures 50°F and below).

= exceeds critical temperature

<table>
<thead>
<tr>
<th>TEMPERATURE</th>
<th>REFRIGERANT (SPORLAN CODE)</th>
<th>TEMPERATURE</th>
<th>REFRIGERANT (SPORLAN CODE)</th>
<th>TEMPERATURE</th>
<th>REFRIGERANT (SPORLAN CODE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(°F)</td>
<td>(°C)</td>
<td>134a (J)</td>
<td>404a (S)</td>
<td>507 (P)</td>
<td>717 (A)</td>
</tr>
<tr>
<td>-60</td>
<td>-51.1</td>
<td>21.8</td>
<td>7.3</td>
<td>5.8</td>
<td>18.6</td>
</tr>
<tr>
<td>-55</td>
<td>-48.3</td>
<td>20.3</td>
<td>3.9</td>
<td>2.2</td>
<td>16.6</td>
</tr>
<tr>
<td>-50</td>
<td>-45.6</td>
<td>18.7</td>
<td>0.1</td>
<td>0.9</td>
<td>14.3</td>
</tr>
<tr>
<td>-45</td>
<td>-42.8</td>
<td>16.9</td>
<td>2.0</td>
<td>3.0</td>
<td>11.7</td>
</tr>
<tr>
<td>-40</td>
<td>-40.0</td>
<td>14.8</td>
<td>4.3</td>
<td>5.4</td>
<td>8.8</td>
</tr>
<tr>
<td>-35</td>
<td>-37.2</td>
<td>12.5</td>
<td>6.8</td>
<td>8.1</td>
<td>5.4</td>
</tr>
<tr>
<td>-30</td>
<td>-34.4</td>
<td>9.8</td>
<td>9.6</td>
<td>11.0</td>
<td>1.6</td>
</tr>
<tr>
<td>-25</td>
<td>-31.7</td>
<td>6.9</td>
<td>12.7</td>
<td>14.1</td>
<td>1.3</td>
</tr>
<tr>
<td>-20</td>
<td>-28.9</td>
<td>3.7</td>
<td>16.0</td>
<td>17.6</td>
<td>3.6</td>
</tr>
<tr>
<td>-18</td>
<td>-27.8</td>
<td>2.3</td>
<td>17.4</td>
<td>19.1</td>
<td>4.6</td>
</tr>
<tr>
<td>-16</td>
<td>-26.7</td>
<td>0.8</td>
<td>18.9</td>
<td>20.6</td>
<td>6.5</td>
</tr>
<tr>
<td>-14</td>
<td>-25.6</td>
<td>0.4</td>
<td>20.4</td>
<td>22.2</td>
<td>6.7</td>
</tr>
<tr>
<td>-12</td>
<td>-24.4</td>
<td>1.1</td>
<td>22.0</td>
<td>23.8</td>
<td>7.8</td>
</tr>
<tr>
<td>-10</td>
<td>-23.3</td>
<td>1.9</td>
<td>23.6</td>
<td>25.5</td>
<td>9.0</td>
</tr>
<tr>
<td>-8</td>
<td>-22.2</td>
<td>2.8</td>
<td>25.3</td>
<td>27.3</td>
<td>10.3</td>
</tr>
<tr>
<td>-6</td>
<td>-21.1</td>
<td>3.6</td>
<td>27.0</td>
<td>29.1</td>
<td>11.5</td>
</tr>
<tr>
<td>-4</td>
<td>-20.0</td>
<td>4.6</td>
<td>28.8</td>
<td>30.9</td>
<td>12.9</td>
</tr>
<tr>
<td>-2</td>
<td>-19.9</td>
<td>5.5</td>
<td>30.7</td>
<td>32.8</td>
<td>14.3</td>
</tr>
<tr>
<td>0</td>
<td>-17.8</td>
<td>6.5</td>
<td>32.6</td>
<td>34.8</td>
<td>15.7</td>
</tr>
<tr>
<td>1</td>
<td>-17.2</td>
<td>7.0</td>
<td>33.6</td>
<td>35.8</td>
<td>16.4</td>
</tr>
<tr>
<td>2</td>
<td>-16.7</td>
<td>7.5</td>
<td>34.6</td>
<td>36.9</td>
<td>17.2</td>
</tr>
<tr>
<td>3</td>
<td>-16.1</td>
<td>8.0</td>
<td>35.6</td>
<td>37.9</td>
<td>18.0</td>
</tr>
<tr>
<td>4</td>
<td>-15.6</td>
<td>8.5</td>
<td>36.6</td>
<td>39.0</td>
<td>18.8</td>
</tr>
<tr>
<td>5</td>
<td>-15.0</td>
<td>9.1</td>
<td>37.7</td>
<td>40.1</td>
<td>19.6</td>
</tr>
<tr>
<td>6</td>
<td>-14.4</td>
<td>9.6</td>
<td>38.7</td>
<td>41.1</td>
<td>20.4</td>
</tr>
<tr>
<td>7</td>
<td>-13.9</td>
<td>10.2</td>
<td>39.8</td>
<td>42.3</td>
<td>21.2</td>
</tr>
<tr>
<td>8</td>
<td>-13.3</td>
<td>10.8</td>
<td>40.9</td>
<td>43.4</td>
<td>22.1</td>
</tr>
<tr>
<td>9</td>
<td>-12.8</td>
<td>11.3</td>
<td>42.0</td>
<td>44.5</td>
<td>22.9</td>
</tr>
<tr>
<td>10</td>
<td>-12.2</td>
<td>11.9</td>
<td>43.1</td>
<td>45.7</td>
<td>23.8</td>
</tr>
<tr>
<td>11</td>
<td>-11.7</td>
<td>12.5</td>
<td>44.3</td>
<td>46.9</td>
<td>24.7</td>
</tr>
</tbody>
</table>

To determine subcooling for R-404A use BUBBLE POINT values (Temperatures above 50°F — Gray Background); to determine superheat for R-404A, use DEW POINT values (Temperatures 50°F and below).

= exceeds critical temperature

FORM IC-11-09 COPYRIGHT 2009 BY SPORLAN VALVE COMPANY, WASHINGTON, MO 63090 Printed in U.S.A.
D1: PARTS LIST

A Light Guard
B Case Top
C Fixed Front Glass
D Interior End Panel
E Fixed Glass Channel
F Die Board
G Front Toekick
H Air Return
I Insulated Drain Pan
J End Panel Trim
K End Panel
L Rear Toe Kick
M Electrical Raceway
N Outside Back
O Bottom Deck
P Air Discharge
Q Adjustable Shelf Bracket
R Glass Shelf
S Shelf Standard
T Reflective Rear Load Doors
Hill PHOENIX, Inc.
Hereinafter Referred To As Manufacturer

LIMITED WARRANTY

GENERAL WARRANTY

Manufacturer’s products are warranted to be free from defects in materials and workmanship under normal use and maintenance for fourteen months from date of shipment from manufacturer (the “Base Warranty Period”). In the event of a qualifying warranty claim, a new or rebuilt part to replace any defective part will be provided without charge. The replacement part is covered under this warranty for the remainder of the applicable Base Warranty Period. In order to be eligible for warranty coverage, customer must: (i) notify Manufacturer promptly upon discovery of a warrant defect, and (ii) comply with the warranty claim procedures provided by Manufacturer from time to time.

This equipment warranty does not include labor or other costs incurred for diagnosing, repairing, removing, installing, shipping, servicing, or handling of either defective parts or replacement parts.

The warranty shall not apply:
1. To any unit or any part thereof which has been subject to accident, alteration, negligence, misuse or abuse, or which has not been operated in accordance with the manufacturer’s recommendations, or in conditions outside of Manufacturer’s specifications, or if the serial number of the unit has been altered, defaced, or removed.
2. When the unit, or any part thereof, is damaged by fire, flood, or other act of God.
3. When products that are impaired or damaged due to improper installation.
4. When installation and startup forms are not properly completed or returned within two weeks after startup.
5. If the defective part is not returned to the Manufacturer.
6. To service, maintenance or wear and tear parts (such as lights, starters and ballasts).

MODIFICATIONS TO GENERAL WARRANTY

The following sets forth certain modifications to the General Warranty for specific products of Manufacturer:

DISPLAY CASE AND SPECIALTY PRODUCTS CLEARVOYANT® LED LIGHTING

The warranty period for Clearvoyant LED lighting components within the Clearvoyant lighting system is five years from date of shipment.

REMEDY LIMITATION/DAMAGES EXCLUSION

THE REMEDY OF REPAIR OR PROVISION OF A REPLACEMENT PART WITHOUT CHARGE SHALL BE THE EXCLUSIVE REMEDY FOR ANY WARRANTY CLAIM HEREUNDER. WITHOUT LIMITING THE FOREGOING, MANUFACTURER SHALL NOT BE LIABLE UNDER ANY CIRCUMSTANCES FOR INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES, INCLUDING LOSS OF PROFIT, LABOR COST, LOSS OF REFRIGERANT OR FOOD PRODUCTS.

EXCLUSIVE WARRANTY

THE FOREGOING WARRANTY IS THE EXCLUSIVE WARRANTY WITH RESPECT TO THE PRODUCTS. ALL OTHER WARRANTIES, WHETHER EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, THE WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE HEREBY DISCLAIMED AND EXCLUDED. NO IMPLIED WARRANTY SHALL BE DEEMED CREATED BY COURSE OF DEALING OR USAGE OF TRADE. NO OTHER PERSON IS AUTHORIZED TO EXPAND OR CREATE ANY OBLIGATION GREATER THAN OR MORE EXPANSIVE THAN THE WARRANTY PROVIDED HEREIN.

Submit warranty claims to:

Hillphoenix Refrigeration & Power Systems Division
2016 Gees Mill Road
Conyers, GA 30013
Attn: Tom Bradshaw
Phone: 770-285-3267
tom.bradshaw@hillphoenix.com

Hillphoenix Display Case Division
1925 Ruffin Mill Road
Colonial Heights, VA 23834
Attn: Harry Moy
Phone: 804-614-1457
harrymoy@hillphoenix.com

Hillphoenix Specialty Products Division
703 Franklin Street
Keosauqua, IA 52565
Attn Jake Bair
Phone: 319-293-8551
jake.bair@hillphoenix.com

4844-3514-3187.2
Warning

Maintenance & Case Care

When cleaning cases the following must be performed PRIOR to cleaning:

To avoid electrical shock, be sure all electric power is turned off before cleaning. In some installations, more than one switch may have to be turned off to completely de-energize the case.

Do not spray cleaning solution or water directly on fan motors or any electrical connections.

All lighting receptacles must be dried off prior to insertion and re-energizing the lighting circuit.

Please refer to the Use and Maintenance section of this installation manual.