Made For Each Other.

Synthetic Refrigerants and Parallel Racks.
It is well documented that today’s growing trend in refrigeration systems lies with natural refrigerants such as CO2 or ammonia. They are abundant, and thus less expensive, to use. They have zero impact on the environment, while delivering excellent economy and performance. But for those customers who choose to rely upon the more traditional, synthetic refrigerants such as HFCs and HFC/HFO blends, Hillphoenix has engineered a powerful solution.

A Perfect Match.

Finally there is a refrigeration system that marries all the benefits of synthetics with the superior performance and flexibility of the parallel rack architecture Hillphoenix has been building for decades. Synthetic Parallel Rack Systems offer a welcome alternative for industrial customers in every business category.

Synthetics Are A Safe Choice.

Unlike the most popular natural refrigerant used in industrial applications — ammonia — synthetics like HFCs and HFC/HFO blends are much less toxic and less flammable. Whenever ammonia leaks occur, the public must be alerted and appropriate steps taken immediately. Ammonia is a toxic, life threatening substance and its misuse is a cause for immediate concern. Not so with HFCs and HFC/HFO blends.

Parallel Racks Have Built-In Advantages.

Parallel Rack Systems come on custom-designed platforms built around multiple compressors—as many compressors as an application might need—linked in parallel with a temperature range from -45°F to +45°F degrees. Multiple compressors mounted on a single base share common suction and discharge lines to allow refrigeration loads and temperatures to be divided across the system based on need. Plus, every assembly is configured, built, installed and tested at the Hillphoenix factory before it is shipped. Pre-wired, pre-piped, and pre-tested to begin working right away with application-specific compressors and capacity steps.

Shared Loads Increase Efficiency.

Multiple compressors serving a single load—choose from reciprocating compressor and/or screw compressors—come with an unmatched level of efficiency. Total refrigeration load divided among multiple compressors allows for more precise capacity control (available in twenty-five to three hundred fifty-ton capacities). Compressor(s) can be turned off as opposed to mechanical unloading which leaves compressors operating and consuming energy. And, when loads change or maintenance is required, the other compressors in line adjust their output to match load demands—with no interruptions or degraded performance.